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Abstract We consider the quadratic eigenvalue problem (QEP) Q(λ )x := (λ 2M +
λD+K)x= 0. A Hermitian QEP is hyperbolic if M is positive definite and (xHDx)2−
4(xHMx)(xHKx)> 0 for all nonzero vectors x. Although there exist many algorithms
for detecting hyperbolicity, most of them are not suitable for large QEPs. Motivated
by this, we propose a new basic subspace algorithm for detecting large hyperbolic
QEPs. Furthermore, we propose a specialized algorithm and its preconditioned vari-
ant. Our algorithms can be easily adapted to detect a large overdamped QEP (a hy-
perbolic QEP with D positive definite and K positive semidefinite). Numerical exper-
iments demonstrate the efficiency of our specialized algorithms.
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1 Introduction

We consider the quadratic eigenvalue problem

Q(λ )x := (λ 2M+λD+K)x = 0 (1.1)

where M, D, K are complex matrices of order n, x 6= 0 is the eigenvector, λ the
corresponding eigenvalue. The pair (λ ,x) is called an eigenpair.
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The standard approach to solving a QEP of order n is to use an appropriate lineariza-
tion of order 2n and solve the corresponding generalized eigenvalue problem (GEP).
Two common linearizations of Q(λ ) from (1.1) are as follows:[

0 I
−K −D

]
−λ

[
I 0
0 M

]
(1.2)

and [
−K 0
0 M

]
−λ

[
D M
M 0

]
=: A−λB. (1.3)

Definition 1.1 The QEP (1.1) and the corresponding quadratic matrix polynomial
Q(λ ) are called: Hermitian if M, D and K are all Hermitian; hyperbolic if they are
Hermitian, M is positive definite and

d(x) := (xHDx)2−4(xHMx)(xHKx)> 0, for all nonzero x ∈ Cn; (1.4)

overdamped if they are hyperbolic, D is positive definite and K is positive semidefi-
nite.

The Hermitian Q(λ ) from (1.1) with M positive definite is hyperbolic if and only
if the Hermitian matrix pencil (1.3) is definite [11, Theorem 3.6], meaning that some
real linear combination of the matrices A and B is positive definite. A hyperbolic QEP
appears for example in dynamic analysis of structural mechanical systems, such as
a damped mass-spring oscillator [19,23]. More about applications of QEPs can be
found in [20].

Definition 1.2 Let a matrix U ∈ Cn×p have full column rank. The quadratic matrix
polynomial

UHQ(λ )U = λ
2UHMU +λUHDU +UHKU

is called a compressed, or more precisely U-compressed, quadratic matrix polynomial
for the given Q(λ ) from (1.1). Finding scalars λ and nonzero vectors y ∈ Cp such
that UHQ(λ )Uy = 0 holds is called a compressed, or more precisely U-compressed,
QEP for the given QEP (1.1).

For the given Hermitian QEP we are interested in detecting if it is hyperbolic. In this
paper, we propose new subspace algorithms for detecting a hyperbolic QEP. Proposed
subspace algorithms are based on iterative testing of small compressed QEPs formed
by using search subspaces of small dimensions.

Here we briefly list some algorithms for detecting hyperbolicity (overdampedness),
where n is the order of a given Hermitian Q(λ ). In [21], Veselić proposes a J-Jacobi
method for detecting the definiteness of the particular symmetric linearization of the
Q(λ ), which is equivalent to the overdampedness of the given Q(λ ) . This test re-
quires the initial 11n3/3 flops and then at most 12sn3 flops, where s is the number of
the performed sweeps. In [11], Higham, Tisseur and Van Dooren propose the level
set algorithm. It computes all 4n eigenvalues of a QEP with complex matrices of or-
der 2n and then checks some simple conditions to detect the (non)definiteness of the
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matrix pencil (1.3). In [8, Algorithm 1], Guo and Lancaster propose an algorithm for
detecting hyperbolicity by computing all 2n eigenvalues of the given QEP. It is more
efficient than the one proposed in [11]. Furthermore, they propose an algorithm for
detecting overdampedness in [8, Sect. 4]; it also detects hyperbolicity after proper
shifting of Q(λ ). That algorithm finds two solutions (the so-called solvents) of the
corresponding matrix equation of order n using a matrix iteration [8, Algorithm 2];
about 19n3/3 flops are needed for one iteration. Then at most one extremal eigen-
value of each solvent must be computed. In [6], Guo, Higham and Tisseur accelerate
the algorithm given in [8, Sect.4]: by using the same matrix iteration, but without
the computation of the solvents. It requires at most 5n3/3 flops for the preprocessing
step, and n3/3 for k = 0 or roughly 20kn3/3 flops for k ≥ 1, where k is the number
of iterations in the overdamping test [6, Algorithm 5.1]. In [7], Guo, Higham and
Tisseur propose an improved arc algorithm for detecting a definite Hermitian ma-
trix pencil and its modification to detect a hyperbolic quadratic. In [18], Niendorf
and Voss propose the hyperbolicity test. More details about algorithms in [7,18] are
given in Sect. 4.2. Finally, in [2], Ali proposes a bisection-like method for detecting
hyperbolicity of a given banded QEP, which is suitable for large banded QEPs.

Most of the aforementioned algorithms are not suitable for large QEPs. However,
our algorithms are particularly suitable for large QEPs.

This paper is organized as follows. In Sect. 2 we recall some results on hyperbolic
QEPs. In Sect. 3 we propose a basic subspace algorithm for detecting hyperbolicity
(Algorithm 3.1) of a Hermitian QEP. Furthermore, we propose a specialized algo-
rithm for detecting hyperbolicity (Algorithm 3.2) and its modification which uses
the preconditioners, both based on the algorithms proposed in [15]. Sect. 4 contains
numerical experiments. Some concluding remarks are given in Sect. 5.
We use the following notation: A� 0 (� 0) means that A is a Hermitian positive def-
inite (positive semidefinite) matrix; A≺ 0 (� 0) means that A is a Hermitian negative
definite (negative semidefinite) matrix, and In is an identity matrix of order n.

2 Preliminaries

Here we list some properties of a hyperbolic Q(λ ) that are needed for the under-
standing of our algorithms. It is known that Hermitian Q(λ ) with a positive definite
leading coefficient matrix is hyperbolic if and only if there exists a shift λ0 ∈ R such
that Q(λ0) is a negative definite matrix [16, Lemmas 31.15 and 31.23].

Theorem 2.1 ([8,22]) Let Q(λ ) of order n be hyperbolic. Then its eigenvalues are
all real. Denote its eigenvalues by λ

±
i and arrange them in the order of

λ
−
n ≤ ·· · ≤ λ

−
1 < λ

+
1 ≤ ·· · ≤ λ

+
n . (2.1)

Then

a) Q(λ )≺ 0 for all λ ∈ (λ−1 ,λ+
1 );

b) Q(λ ) is overdamped if and only if λ+
n ≤ 0.
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c) (Cauchy-type interlacing inequalities) Let U ∈ Cn×p such that rank U = p. De-
note the eigenvalues of the hyperbolic UHQ(λ )U by µ

±
i and arrange them in the

order of
µ
−
p ≤ ·· · ≤ µ

−
1 < µ

+
1 ≤ ·· · ≤ µ

+
p . (2.2)

Then

λ
+
i ≤ µ

+
i ≤ λ

+
i+n−p for i = 1, . . . , p, (2.3)

λ
−
j ≥ µ

−
j ≥ λ

−
j+n−p for j = 1, . . . , p. (2.4)

Definition 2.1 Let Q(λ ) be hyperbolic. The open interval (λ−1 ,λ+
1 ) from (2.1) is

called the gap. Every λ
+
i (λ−i ) from (2.1) is called an eigenvalue of a positive (nega-

tive) type.

Now we recall the definition of a weakly hyperbolic QEP, which generalizes a hy-
perbolic QEP.

Definition 2.2 The QEP (1.1) and the corresponding quadratic matrix polynomial
Q(λ ) are called: weakly hyperbolic if they are Hermitian, M is positive definite and

γ := min
‖x‖2=1

(
(xHDx)2−4(xHMx)(xHKx)

)
≥ 0, x ∈ Cn; (2.5)

weakly overdamped if they are weakly hyperbolic, D is positive definite and K is
positive semidefinite.

Suppose that Q(λ ) is Hermitian with a positive definite leading coefficient matrix
and Q(λ ) 6= 0 for all λ . Then, Q(λ ) is weakly hyperbolic if and only if there exists
λ0 ∈ R such that Q(λ0) is a negative semidefinite matrix [16, Corollary 31.8 and
Lemma 31.23].

Theorem 2.2 ([16,22]) Let Q(λ ) of order n be weakly hyperbolic.

(a) In (2.5), if γ = 0, then Q(λ ) has 2n real eigenvalues that can be of order λ−n ≤
·· · ≤ λ

−
1 = λ

+
1 ≤ ·· · ≤ λ+

n .
(b) Q(λ+

1 )� 0.
(c) The Cauchy-type interlacing inequalities hold.

We give two more statements about a hyperbolic Q(λ ). Corollary 2.1 is a direct con-
sequence of the Cauchy-type interlacing inequalities. Proposition 2.1 is a counterpart
of [13, Theorem 3.10] for a definite matrix pencil.

Corollary 2.1 If Q(λ ) of order n is hyperbolic, then for every U ∈Cn×p with rank U
= p, the gap of UHQ(λ )U contains the gap of Q(λ ).

Proposition 2.1 Let Q(λ ) be Hermitian of order n with a positive definite leading
coefficient matrix. Let the gaps of hyperbolic quadratics UHQ(λ )U, taken for all
U ∈Cn×p with rank U = p, have a non-void intersection I . Then Q(λ ) is hyperbolic,
and I is the gap of Q(λ ).
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Proof For every λ ∈ I a matrix UHQ(λ )U is negative definite. Let 0 6= u ∈ Cn.
Complete u to a matrix U with full column rank. Then uHQ(λ )u is a diagonal element
of the negative definite matrix UHQ(λ )U , and thus the former must be negative. So,
Q(λ ) is a negative definite matrix for every λ ∈I . This proves hyperbolicity of the
quadratic Q(λ ), as well the fact that I is contained in the gap of Q(λ ). Corollary 2.1
implies the equality of these intervals. ut

Suppose Q(λ ) from (1.1) is hyperbolic. If there exists x 6= 0 such that d(x)≈ 0, for
0 < d(x) from (1.4), then Q(λ ) is close to a nonhyperbolic one. Indeed, in [11],

φ(M,D,K) := min
‖x‖2=1

√
d(x),

is used as a natural measure of the degree of hyperbolicity. There holds

φ(M,D,K)≥ d(M,D,K),

where d(M,D,K) is a distance from the hyperbolic Q(λ ) to the nearest nonhyperbolic
one (for details, see [9,11]). Therefore, small perturbations in the coefficient matrices
may cause the loss of hyperbolicity. In [8, Sect. 5], the number 1

4 (λ
−
1 −λ

+
1 )2 is pro-

posed as another measure of the degree of hyperbolicity. If λ
−
1 ≈ λ

+
1 , the hyperbolic

Q(λ ) is close to the weakly hyperbolic Q̃(λ ) with λ̃
−
1 = λ̃

+
1 .

3 Subspace algorithms

In this section, we propose subspace algorithms for detecting a hyperbolic QEP. Our
algorithms make use of three important facts:

i) a necessary condition: if a given QEP is hyperbolic, then so is every compressed
QEP;

ii) a sufficient condition: suppose QEP (1.1) is Hermitian with a positive definite
leading coefficient matrix; if Q(λ0) ≺ 0 for some λ0 ∈ R, then the given QEP is
hyperbolic;

iii) if a given QEP is hyperbolic, the Cauchy-type interlacing inequalities hold.

First, we propose a basic subspace algorithm: Algorithm 3.1.

Remark 3.1 Some remarks about Algorithm 3.1 are as follows:

– Before forming d(u), we normalize u such that ‖u‖2 = 1. If we find some vector
u such that 0≤ d(u)≈ 0, we can terminate our algorithm (lines 5–6). According
to the discussion at the end of Sect. 2, this implies that Q(λ ) may be weakly hy-
perbolic. If we find some vector u such that d(u)< 0, then Q(λ ) is not hyperbolic
by definition (lines 7–8).

– We choose p such that p� n, so UH
i Q(λ )Ui is a small quadratic. In order to

solve the corresponding small QEP (line 11), one can use the QZ algorithm for
the GEP of an appropriate linearization [10,20].
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Algorithm 3.1 A basic subspace algorithm for detecting a hyperbolic QEP
Input: Hermitian matrices M, D, K ∈ Cn×n such that M is positive definite; an initial basis matrix U0 ∈

Cn×p such that rank U0 = p; tolerance ε;
Output: λ0 such that Q(λ0) is negative definite if Q(λ ) = λ 2M+λD+K is hyperbolic.
1: set I0 = (−∞,+∞);
2: for i = 0, 1, 2, . . . do
3: for j = 1, 2, . . . , p do
4: form d(u) = (uH Du)2−4(uH Mu)(uH Ku), where u is the jth column of Ui
5: if 0≤ d(u)< ε then
6: STOP: Q(λ ) may be weakly hyperbolic.
7: else if d(u)< 0 then
8: STOP: Q(λ ) is not hyperbolic.
9: end if

10: end for
11: solve the QEP UH

i Q(λ )Ui;
12: if UH

i Q(λ )Ui is not hyperbolic then
13: STOP: Q(λ ) is not hyperbolic.
14: else
15: return its gap Ide f ;
16: intersect Ii←Ii ∩Ide f ;
17: if Ii = /0 then
18: STOP: Q(λ ) is not hyperbolic.
19: else if length(Ii)< ε then
20: STOP: Q(λ ) may be weakly hyperbolic.
21: else
22: let µi ∈Ii;
23: if Q(µi)≺ 0 then
24: STOP: Q(λ ) is hyperbolic.
25: else
26: form a new subspace spanUi+1 of dimension p;
27: end if
28: end if
29: end if
30: end for
31: if hyperbolicity is detected, return λ0 = µi such that Q(λ0) is negative definite.

– For detecting if a compressed QEP is hyperbolic (lines 12 and 14) we can use [8,
Algorithm 1] based on [8, Theorem 3]. Alternatively, we can delete line 11 and
check if UH

i Q(λ )Ui is hyperbolic using the algorithm from [8, Sect. 4].
– If UH

i Q(λ )Ui in not hyperbolic, then the necessary condition is violated and Q(λ )
is not hyperbolic (lines 12–13).

– If Ii = /0, then Q(λ ) is not hyperbolic (lines 17–18) by Corollary 2.1.
– We can simply choose µi as the middle of the interval Ii (line 22).
– If Q(µi) ≺ 0 for some some real µi, then Q(λ ) is hyperbolic by the sufficient

condition (lines 23–24). The negative definiteness of Q(µi) is easily checked by
computing the Cholesky factorization, which is a numerically stable algorithm,
of the matrix −Q(µi).

– The dimension of search subspaces can vary for different i, but using the small
fixed dimension p assures fixed memory requirements and the fixed numerical
cost per iteration for solving a QEP of order p.
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– If the length of the current approximation interval Ii is very small (line 19), this
signals that in the case of the given hyperbolic Q(λ ), the gap is even smaller.
Therefore, such Q(λ ) is close to the weakly hyperbolic quadratic with γ = 0, and
iterating further will not provide any more useful information if the tolerance is
approximately equal to the unit roundoff.

– We can terminate our algorithm if the iteration index i reaches a predetermined
value imax (e.g. imax = 100). Based on our numerical experiments (only part of
them is presented in Sect. 4), this often indicates that the given QEP is close to
the weakly hyperbolic quadratic with γ = 0. Indeed, by decreasing the lengths
of the gaps of the hyperbolic QEPs, we notice an increase in the total number of
iterations to terminate Algorithm 3.2.

A nontrivial question is how to choose new search subspaces in our subspace al-
gorithm. If we want the gaps of the hyperbolic compressed quadratics to shrink as i
increases, we should reuse some information from the previous steps (see Proposi-
tion 3.1). Furthermore, since we are solving the whole small compressed QEP, we can
apply the Rayleigh-Ritz procedure [15, Algorithm 7.1] and use Ritz values as approx-
imations to some eigenvalues of the original QEP. Since we aim to find a shift from
the gap (λ−1 ,λ+

1 ) of a hyperbolic QEP, then it is appropriate to apply the Rayleigh-
Ritz procedure by extracting inner eigenvalues. In [15], Liang and Li propose several
subspace algorithms. These algorithms compute a few largest or a few smallest eigen-
pairs of the given type of a large hyperbolic Q(λ ). We propose a combination of two
aforementioned algorithms that compute eigenpairs closest to the gap of the given
hyperbolic Q(λ ), namely the Locally Optimal Block Extended Conjugate Gradient
method (LOBeCG) from [15, Sect. 11.2] and our Algorithm 3.1, to get a specialized
subspace algorithm for detecting a hyperbolic QEP; see Algorithm 3.2.

The subspace Km(Q(µ),x) := span{x,Q(µ)x, . . . , [Q(µ)]m−1x} is called the mth
Krylov subspace of a matrix Q(µ) on a vector x. Notice that for a Ritz pair (µ,x),
the vector Q(µ)x is a residual vector for the given QEP, and is contained in the
mth Krylov subspace for m ≥ 2. Instead of using Krylov subspace Km(Q(µ±i; j),xi; j)
in (3.1), we can use the preconditioned Krylov subspace

Km(TiQ(µ±i; j),xi; j) = span{xi; j,TiQ(µ±i; j)xi; j, . . . , [TiQ(µ±i; j)]
m−1xi; j},

where Ti =−Q(µi)
−1 is an indefinite preconditioner in the ith iteration step, and get

the Locally Optimal Block Preconditioned Extended Conjugate Gradient (LOBPeCG)
algorithm for detecting a hyperbolic QEP. We will refer to this algorithm as the pre-
conditioned variant of Algorithm 3.2. For more details about generating a basis matrix
for the subspace (3.1) or the version with the preconditioners, we refer the interested
readers to [15, Sect. 10–11]; a Modified Gram-Schmidt (MGS) procedure is used,
and some form of reorthogonalization is recommended, for example, see [5]. Us-
ing definite preconditioners in [15, Sect. 12] significantly accelerates the LOBPeCG
algorithms compared to LOBeCG algorithms. Using indefinite preconditioners, not
necessarily in every iteration step, in the preconditioned variant of our Algorithm 3.2
can accelerate the detection of (non)hyperbolicity; see Sect. 4.1.
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Algorithm 3.2 LOBeCG for detecting a hyperbolic QEP
Input: Hermitian matrices M, D, K ∈ Cn×n such that M is positive definite; integers k, k± and an initial

approximation X0 ∈ Cn×k such that rank X0 = k, k ≥ k± ≥ 1; an integer m≥ 2; tolerance ε;
Output: λ0 such that Q(λ0) is negative definite if Q(λ ) = λ 2M+λD+K is hyperbolic.
1: for j = 1, 2, . . . , k do
2: form d(x0) = (xH

0 Dx0)
2−4(xH

0 Mx0)(xH
0 Kx0), where x0 is the jth column of X0

3: if 0≤ d(x0)< ε then
4: STOP: Q(λ ) may be weakly hyperbolic.
5: else if d(x0)< 0 then
6: STOP: Q(λ ) is not hyperbolic.
7: end if
8: end for
9: solve the QEP XH

0 Q(λ )X0;
10: if XH

0 Q(λ )X0 is not hyperbolic then
11: STOP: Q(λ ) is not hyperbolic.
12: else
13: return its eigenpairs (µ±0; j,y

±
j ), j = 1, . . . ,k±;

14: X0← X0[y−k− , . . . ,y
−
1 ,y

+
1 , . . . ,y

+
k+ ], X−1 = [], J= {1≤ j ≤ k±}, µ0 = (µ−0;1 +µ

+
0;1)/2;

15: for j = 1, 2, . . . , k−+ k+ do
16: form d(x0) = (xH

0 Dx0)
2−4(xH

0 Mx0)(xH
0 Kx0), where x0 is the jth column of X0

17: if 0≤ d(x0)< ε then
18: STOP: Q(λ ) may be weakly hyperbolic.
19: else if d(x0)< 0 then
20: STOP: Q(λ ) is not hyperbolic.
21: end if
22: end for
23: end if
24: for i = 0, 1, 2, . . . do
25: if Q(µi)≺ 0 then
26: STOP: Q(λ ) is hyperbolic and µi is from the gap;
27: end if
28: compute a basis matrix Ui of the subspace

Ui = ∑
j∈J

Km(Q(µ±i; j),xi; j)+ span Xi−1, (3.1)

where xi; j is a column of Xi;
29: for j = 1, 2, . . . , (m+1)(k−+ k+) do
30: form d(u) = (uH Du)2−4(uH Mu)(uH Ku), where u is the jth column of Ui
31: if 0≤ d(u)< ε then
32: STOP: Q(λ ) may be weakly hyperbolic.
33: else if d(u)< 0 then
34: STOP: Q(λ ) is not hyperbolic.
35: end if
36: end for
37: solve the QEP UH

i Q(λ )Ui;
38: if UH

i Q(λ )Ui is not hyperbolic then
39: STOP: Q(λ ) is not hyperbolic.
40: else
41: return its eigenpairs (µ±i+1; j,y

±
j ), j = 1, . . . ,k± and let Xi+1 = Ui[y−k− , . . . ,y

−
1 ,y

+
1 , . . . ,y

+
k+ ];

42: if µ
+
i+1;1−µ

−
i+1;1 < ε then

43: STOP: Q(λ ) may be weakly hyperbolic.
44: else
45: let µi+1 = (µ−i+1;1 +µ

+
i+1;1)/2;

46: end if
47: end if
48: end for
49: if hyperbolicity is detected, return Xi, interval (µ−i;1,µ

+
i;1) and λ0 = µi such that Q(λ0) is negative

definite.
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The following proposition assures a monotonicity property of our subspace algo-
rithms.

Proposition 3.1 If the ith step of Algorithm 3.2 (or its preconditioned variant) is
executed then

µ
+
i+1; j ≤ µ

+
i; j for j = 1, . . . ,k+, (3.2)

µ
−
i; j ≤ µ

−
i+1; j for j = 1, . . . ,k−. (3.3)

Proof Let Ui−1 = [Xi−1,Wi−1]. Hence for j = 1, . . . ,k±, (µ±i; j,y
±
j ) are inner eigenpairs

of the hyperbolic UH
i−1Q(λ )Ui−1 and Xi is the corresponding matrix of Ritz vectors.

Therefore, Ui = [Xi,Wi] and µ
±
i+1; j for j = 1, . . . ,k± are inner eigenvalues of the hy-

perbolic UH
i Q(λ )Ui. For U = [e1, . . . ,er], where e j is the jth column of the identity

matrix and r = k−+ k+,

UH(UH
i Q(λ )Ui)U = XH

i Q(λ )Xi

is a compressed quadratic of the hyperbolic quadratic UH
i Q(λ )Ui. Since µ

±
i; j are in-

ner eigenvalues of the hyperbolic XH
i Q(λ )Xi, by using the Cauchy-type interlacing

inequalities we obtain (3.2) and (3.3). ut

After detecting hyperbolicity, we can delete the lines corresponding to the detection
of hyperbolicity and continue with Algorithm 3.2 or with its preconditioned variant
(using T = −Q(λ0)

−1 � 0). Then the intervals (µ−i+1;1,µ
+
i+1;1) shrink as i increases.

These intervals converge to the gap, that is, convergence of µ
+
i+1;1 and µ

−
i+1;1 to some

eigenvalue is proven in [15, Sect. 11] for k = k+ = 1, k− = 0 and k+ = 0, k = k− = 1,
respectively; but convergence to the extremal eigenvalues λ

±
1 is guaranteed only if

λ
−
2 < µ

−
i+1;1 for some i and µ

+
i′+1;1 < λ

+
2 for some i′. An asymptotic estimate for the

convergence of the sequences {µ±i;1} is given in [15, Theorems 8.2, 9.1] for a single
vector version (k = 1).

3.1 Comparison of Algorithm 3.2 with some other algorithms

In [12, Sect. 3.6.2], Keller proposes the method of a coordinate relaxation for de-
tecting a definite matrix pencil, and the author expands that method to a subspace
algorithm in [17, Sect. 2]. These methods can be applied to the Hermitian lineariza-
tion (1.3) in order to detect hyperbolicity of Q(λ ). For efficiency, in every iteration
of the algorithm in [17], we can test negative definiteness of Q(µi) of order n instead
of positive definiteness of A−µiB of order 2n.

A modification of the mentioned subspace algorithm for detecting a definite ma-
trix pencil to a subspace algorithm for detecting a hyperbolic Q(λ ) is given as Al-
gorithm 3.2. Applying the subspace algorithm directly to Q(λ ) has two important
advantages over applying the subspace algorithm to its Hermitian linearization. First,
we work directly with coefficient matrices of order n of the given Q(λ ), instead of
using the linearization of order 2n, which reduces the storage requirement. Second,
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Table 3.1 Operation count per iteration of Algorithm 3.2 and the algorithm in [17] applied to the Hermitian
linearization. Here, k = k−+ k+ ≥ 2.

Algorithm 3.2 Algorithm in [17]
Operations Cost (flops) Cost (flops)
Evaluating Q(µi) 4n2 4n2

Cholesky for −Q(µi) n3/3 n3/3
Forming a basis

6n2(m−1)k+O(m3k2n)
16n2(m+1)k−8n2+

matrix for Ui O((m+1)2k2n)
Computing one d(x) 6n2 +6n 16n2 +8n
Computing compressed 6n2(m+1)k+ 16n2(m+1)k+
matrices 6n(m+1)2k2 8n(m+1)2k2

Solving GEP of order 2(m+1)k
368(m+1)3k3 46(m+1)3k3

((m+1)k) using the QZ algorithm
Cholesky for the compressed

(m+1)3k3/3 (m+1)3k3/3quadratic (pencil) of order (m+1)k
Computing Ritz vectors 2n(m+1)k2 4n(m+1)k2

assuming k,m� n, the cost per iteration of Algorithm 3.2 is smaller than the cost
per iteration of the algorithm in [17] applied to the linearization (1.3): see Table 3.1.
In the algorithm in [17], d(x) refers to computing xHAx and xHBx. If −Q(µi) is not
positive definite, the Cholesky factorization can break down in the early stages of
the factorization. The algorithm in [12] has the smallest cost per iteration in com-
parison to Algorithm 3.2 and the algorithm in [17]; see Table 3.2. Nevertheless, to
confirm that a given Q(λ ) is hyperbolic, the algorithm in [12] needs to compute λ

−
1

and λ
+
1 . For large Q(λ ) it is very slow. For example, for Q(λ ) from Example 4.1

with n = 2000 and ν = 0.51961525, the algorithm in [12] applied to (1.3), terminates
after 1447 iterations with CPU time 4.19 (cf. Table 4.1).

Notice that operation counts given in Tables 3.1 and 3.2 refer to full matrices.
For sparse matrices the cost for evaluating Q(µi), the Cholesky decomposition for
−Q(µi), forming a basis matrix and new directions, computing d(x), compressed
matrices and Ritz vectors is much smaller.

Table 3.2 Operation count per iteration of the algorithm in [12] applied to the Hermitian linearization.

Operations Cost (flops)
Computing compressed matrices 64n2 +64n
Solving two GEPs of order 2 O(1)
Computing Ritz vectors 12n
Forming new directions 64n2 +28n

3.2 Subspace algorithms for detecting overdampedness

Overdamped quadratics are an important subset of hyperbolic quadratics, therefore
we propose a modification of Algorithm 3.1 into a new algorithm: Algorithm 3.3 for
detecting an overdamped QEP.



Detecting a hyperbolic QEP by using a subspace algorithm 11

Algorithm 3.3 A basic subspace algorithm for detecting an overdamped QEP
Input: Hermitian matrices M, D, K ∈Cn×n such that M and D are positive definite, K is positive semidef-

inite; an initial basis matrix U0 ∈ Cn×p such that rank U0 = p; tolerance ε;
Output: λ0 such that Q(λ0) is negative definite if Q(λ ) = λ 2M+λD+K is overdamped.
1: set I0 = (−∞,+∞);
2: for i = 0, 1, 2, . . . do
3: for j = 1, 2, . . . , p do
4: form d(u) = (uH Du)2−4(uH Mu)(uH Ku), where u is the jth column of Ui
5: if 0≤ d(u)< ε then
6: STOP: Q(λ ) may be weakly overdamped.
7: else if d(u)< 0 then
8: STOP: Q(λ ) is not overdamped.
9: end if

10: end for
11: solve the QEP UH

i Q(λ )Ui;
12: if UH

i Q(λ )Ui is not overdamped then
13: STOP: Q(λ ) is not overdamped.
14: else
15: return its gap Ide f ;
16: intersect Ii←Ii ∩Ide f ;
17: if Ii = /0 then
18: STOP: Q(λ ) is not overdamped.
19: else if length(Ii)< ε then
20: STOP: Q(λ ) may be weakly overdamped.
21: else
22: let µi ∈Ii;
23: if Q(µi)≺ 0 then
24: STOP: Q(λ ) is overdamped.
25: else
26: form a new subspace spanUi+1 of dimension p;
27: end if
28: end if
29: end if
30: end for
31: if overdampedness is detected, return λ0 = µi such that Q(λ0) is negative definite.

Remark 3.2 All remarks in Remark 3.1, except the first part in the third remark, ap-
ply directly to Algorithm 3.3 by replacing the word “hyperbolic” by the word “over-
damped”. An additional remark is as follows.

– For detecting if the compressed QEP is overdamped (lines 12 and 14), we can de-
tect if it is hyperbolic and check if its largest eigenvalue is nonpositive; see The-
orem 2.1, item b). If K � 0, then we can use the two-sided J-Jacobi method [21,
Sect. 2] or the implicit J-Jacobi method [21, Sect. 3]. In the case of a nonover-
damped compressed QEP, the J-Jacobi methods terminate when some of the cri-
teria in [21, Sect. 2] are violated.

Similarly to Algorithm 3.3, we can adapt Algorithm 3.2 and its preconditioned vari-
ant to detect only overdamped QEPs.
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4 Numerical experiments

In Sect. 4.1, we give several numerical experiments to demonstrate the behaviour
of Algorithm 3.2 and its preconditioned variant, for m = 2 in (3.1) and for different
dimensions p of search subspaces. We use k = k± = 1,2,3, that is, p = 6,12,18,
respectively. Search subspaces in Algorithm 3.2 are of

type A: Ui = span{Xi,Ri,Xi−1}, where Ri is the residual matrix of the current
iteration matrix Xi.

In the preconditioned variant of Algorithm 3.2 search subspaces are of

type B: Ui = span{Xi,Ti Ri,Xi−1}, where Xi and Ri are as above, while Ti =
Q(µi)

−1 is the preconditioner used only in every fifth iteration (in other itera-
tions, Ti = In). Indefinite linear systems used for computing the columns of the
matrix Ti Ri can be solved only approximately (although, for simplicity of our
codes, we use the MATLAB backslash operator).

In some cases, after the MGS in the inner product induced by the positive definite
matrix M is applied to the current basis matrix, the final dimension of the search
subspace is less than p. We use tolerance ε = n× 10−16, where n is the order of
Q(λ ).

In Sect. 4.2, we compare the preconditioned variant of Algorithm 3.2 with type B of
search subspaces and p = 6, with algorithms proposed in [7,18]. The same tolerance
ε as above is used in the algorithms from [7,18].

All experiments have been performed in MATLAB R2015a on Intel Core i3-4150
CPU 3.50 GHz, 6 GB RAM. An initial search subspace and an initial vector are
randomly chosen (we use vectors with uniformly distributed components) in all our
experiments. For the Cholesky factorization we use the MATLAB’s built-in function
chol in our algorithms and in the algorithm proposed in [18], but a hand-written
function for the algorithm proposed in [7]. For detecting an overdamped compressed
quadratic we use the implicit J-Jacobi method [21], while for detecting a hyperbolic
compressed quadratic we use the MATLAB’s built-in function polyeig.

4.1 Comparison of different dimensions of search subspaces

Example 4.1 (cf. [6–8,18]) Consider the quadratic eigenvalue problem (1.1) with

M := In, D := ν


20 −10
−10 30 −10

. . . . . . . . .
−10 30 −10

−10 20

 , K :=


15 −5
−5 15 −5

. . . . . . . . .
−5 15 −5
−5 15

 ,
where ν > 0 is a real parameter. Notice that all three matrices are positive defi-
nite. This QEP comes from a finite element model of a damped mass-spring sys-
tem and these matrices can be generated by using the NLEVP MATLAB toolbox [3,
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4] by the command nlevp(’spring’,n,1,10*ones(n,1)). It is known that for
ν ≤ 0.5196152422 Q(λ ) is not overdamped, and for ν ≥ 0.5196152423 it is over-
damped. The exact turning value ν∗, for which Q(λ ) is weakly overdamped, is some-
where in (0.5196152422,0.5196152423). For n = 200, 2000 and different parame-
ters ν , we compare the algorithm with subspaces of type A to the algorithm with
subspaces of type B, both adapted for overdamped quadratics.

Table 4.1 Comparison of Algorithm 3.2 and its preconditioned variant (given in brackets) for detecting
(non)overdamped quadratics from Example 4.1 for n = 2000, p = 6 and with different values of ν . A
number of the attempted Cholesky factorizations (CPU time) is given in the first (second) row for the
nonoverdamped and the overdamped cases.

ν 0.2 0.4 0.5 0.5196 0.519615 0.51961524 0.5196152422
0 1 3 12 (5) 17 (9) 23 (10) 28 (10)

0.0002 0.007 0.03 0.14 (0.1) 0.41 (0.18) 0.71 (0.21) 1.02 (0.25)
ν 1 0.53 0.5197 0.519650 0.519616 0.51961525 0.5196152423

1 1 2 8 (6) 10 (6) 14 (7) 17 (11)
0.0028 0.0032 0.0116 0.08 (0.06) 0.12 (0.07) 0.23 (0.10) 0.42 (0.27)

Our algorithms detect correctly the type of the quadratics in all cases. Increasing
dimension p, for the fixed type of search subspaces, fixed n and ν , does not result in
an increase of the total number of the attempted Cholesky factorizations, but it results
in an increase in CPU time. For the fixed type of search subspaces and fixed ν the total
number of the attempted Cholesky factorizations for n = 200 and n = 2000 is almost
the same. Therefore, in Table 4.1, we give the results only for n= 2000 and p= 6. For
example, for ν = 0.519616 the algorithm with subspaces of type A (type B) detects
overdampedness after the 10th (6th) attempted Cholesky factorization is successfully
completed with CPU time 0.12 (0.07). For ν = 0.2 nonoverdampedness is detected
by definition. As parameter ν is moving away from ν∗, the total number of iterations
decreases. When ν is close to ν∗, the total number of iterations is significantly smaller
when using type B of search subspaces than when using type A.

Example 4.2 In this experiment we use the following method from [14] for gen-
erating quadratic matrix polynomials with prescribed eigenpairs. Let (λk,vk), k =
1, . . . ,2n such that

Λ1 := diag(λ1, . . . ,λn), Λ2 := diag(λn+1, . . . ,λ2n), Λ1,Λ2 ∈ Rn×n,

V1 := [v1, . . . ,vn],V2 := [vn+1, . . . ,v2n], V1,V2 ∈ Rn×n,

V1, V2 are nonsingular, V1V T
1 = V2V T

2 and Γ := V1Λ1V T
1 −V2Λ2V T

2 is nonsingular.
Then the quadratic matrix polynomial Q(λ ) = λ 2M+λD+K with

M := Γ
−1, D :=−M(V1Λ

2
1 V T

1 −V2Λ
2
2 V T

2 )M,

K :=−M(V1Λ
3
1 V T

1 −V2Λ
3
2 V T

2 )M+DΓ D,
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has eigenpairs (λk,vk), k = 1, . . . ,2n. If 0> λ1≥ ·· · ≥ λn > λn+1≥ ·· · ≥ λ2n, V1V T
1 =

V2V T
2 , V1 and V2 are nonsingular, then Γ is nonsingular and Q(λ ) is overdamped with

K � 0, see [6]. If λmin(Λ1) > λmax(Λ2), V1 is nonsingular, and V2 = V1U for some
orthogonal matrix U , then Q(λ ) is hyperbolic, see [1].

We use the following two eigenvalue distributions, as in [6]:

type 1: λk, k = 1, . . . ,2n, is uniformly distributed in [−100,−1];
type 2: λk, is uniformly distributed in [−100,−6] for k = n+1, . . . ,2n and
[−5,−1] for k = 1, . . . ,n.

With random orthogonal matrices U1, U2 we take V1 = U1 and V2 = V1U2. We con-
struct a set of 80 overdamped quadratics of order n = 500: 40 of each type; and sim-
ilar for quadratics of order n = 1000. The corresponding matrices in the constructed
quadratics are full.

Table 4.2 The minimum, average and maximum number of the attempted Cholesky factorizations, and the
average CPU time of Algorithm 3.2 (the first row for fixed p) and its preconditioned variant (the second
row for fixed p) for detecting 40 overdamped quadratics of type 1 from Example 4.2.

n = 500 (0.09) n = 1000 (0.04)
p min mean max CPU min mean max CPU

6 1 10 36 0.16 1 18 68 0.74
1 6 16 0.11 1 11 26 0.50

12 1 9 32 0.40 1 17 90 1.30
1 6 15 0.27 1 7 16 0.57

18 1 8 22 0.71 1 13 52 1.7
1 6 11 0.46 1 7 16 0.86

Table 4.3 The minimum, average and maximum number of the attempted Cholesky factorizations, and the
average CPU time of Algorithm 3.2 for detecting 40 overdamped quadratics of type 2 from Example 4.2.

n = 500 (1.17) n = 1000 (1.08)
p min mean max CPU min mean max CPU
6 2 2 3 0.03 2 3 3 0.12

12 2 2 3 0.05 2 2 3 0.12
18 2 2 3 0.08 2 2 3 0.17

Tables 4.2 and 4.3 show the minimum, average, and maximum number of the at-
tempted Cholesky factorizations of our algorithms, adapted for overdamped quadrat-
ics, applied to the quadratics of type 1 and type 2, respectively. We also give the
average CPU time and the average length of the gap (in brackets). For every fixed
p, the first and the second row in Table 4.2 correspond to subspaces of type A and
type B, respectively. There was no need to use the preconditioner for type 2, there-
fore the results in Table 4.3 are given only for subspaces of type A. An increase in
the dimension of search subspaces gives a smaller average number of iterations of
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our algorithms for type 1, but with a greater average CPU time. The average num-
ber of the attempted Cholesky factorizations, as well as the average CPU time, was
smaller when using type B of search subspaces than when using type A. The results
for type 2 for different p are almost the same. The lengths of the gaps for type 2 are
greater than for type 1, which explains the smaller number of the attempted Cholesky
factorizations for type 2 as opposed to type 1.

Remark 4.1 Here we list a summary of the conclusions for our Algorithm 3.2 and its
preconditioned variant, from experiments in Sect. 4.1.

– We can use our algorithms for quadratics with full and with sparse matrices.
– Detection of (non)hyperbolicity can be very fast, after just several attempted

Cholesky factorizations (especially when the quadratic is far from being hyper-
bolic, or when the gap is relatively large).

– The preconditioned variant of Algorithm 3.2 (which uses the preconditioners e.g.
only in every fifth iteration) can have a smaller number of total iterations and
shorter CPU time, than Algorithm 3.2.

– An increase in the dimension of search subspaces can reduce the total number of
iterations, but it often increases CPU time.

4.2 Comparison with other algorithms

We compare our subspace algorithm with two algorithms that are suitable for large
QEPs: the hyperbolicity test [18, Algorithm 2] that uses the safeguarded iteration [18,
Algorithm 1] and the arc algorithm [7, Algorithm 2.3] adapted for quadratics [7, Sect.
4.1]. Since in every iteration step all three algorithms use the Cholesky factorization
for confirming that a given quadratic is hyperbolic, we compare them with the total
number of the attempted Cholesky factorizations. We also compare them in terms of
CPU time.

We now describe the hyperbolicity test and the arc algorithm. The safeguarded iter-
ation computes one eigenpair of a Hermitian nonlinear eigenvalue problem that ad-
mits variational characterizations of eigenvalues. It converges globally and monoton-
ically if the initial vector is from the allowed subset, and under certain assumptions,
quadratically to a simple eigenvalue. In the case of a hyperbolic Q(λ ), the hyperbol-
icity test computes a sequence {σk} of approximations of λ

+
1 using the safeguarded

iteration, and checks if Q(σ) is negative definite for some σ which is smaller than the
computed approximations (the upper sweep). If the relative distance of the approxi-
mations becomes very small and hyperbolicity in not detected, then the hyperbolicity
test uses the safeguarded iteration to compute a sequence of approximations of λ

−
1

and checks the negative definitness of Q(ω), where ω is in the middle of two types
of approximations (the lower sweep). The nonhyperbolicity of the given quadratic is
detected by finding some nonzero vector for which the inequality (1.4) does not hold
or when monotonicity of the approximations is violated. The most expensive part in
one iteration from the upper sweep is finding the extremal eigenpair of the matrix
Q(σk). This is done by using the nonlinear Arnoldi method [18, Algorithm 3] which
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requires preconditioners. In our experiments, we do not update a preconditioner; we
just use one LU factorization in the first iteration of the hyperbolicity test.

For the given Hermitian matrix pencil, the arc algorithm detects if this pencil is def-
inite. This algorithm determines the range of some function, which is a part of the
unit circle: an arc or two diametrically opposite points. By using the middle of the
current arc, it checks the positive definiteness of some linear combination of the given
matrices. The nondefiniteness of a given pencil A−λB is detected by finding some
nonzero vector x for which holds xH(A+ iB)x = 0 or for which the length of the cur-
rent arc is greater than π . For detecting a hyperbolic Q(λ ), the arc algorithm uses the
linearization (1.3); but in order to work directly with the given quadratic, it tests the
negative definiteness of the matrix Q(β/α) for some real β/α . If β/α is very large,
this approach used for detecting hyperbolicity can have numerical instability prob-
lems. If negative definiteness is not detected, then a matrix R−1

1 R2 must be formed,
where R1 is upper triangular of order k with real, positive diagonal elements, R2 is of
order k×n− k, n is the order of Q(λ ) and the corresponding Cholesky factorization
breaks down in the k+1st step.

The hyperbolicity test and the arc algorithm adapted for quadratics can detect if a
given quadratic is close to a weakly hyperbolic one with γ = 0: if the approximations
of the eigenvalues λ

±
1 are very close to each other and if the length of the arc is

very close to π , respectively. We use the following abbreviations in the following
experiments:

– SA for our subspace algorithm – a preconditioned variant of Algorithm 3.2,
– HT for the hyperbolicity test, and
– ARC for the arc algorithm.

Example 4.3 We use the same quadratics as in Example 4.1 for n = 2000. For a fixed
value of ν we run SA, adapted for overdamped quadratics, HT and ARC for 50 times.
The attempted Cholesky factorizations in ARC are done without pivoting.

All algorithms correctly detect the type of the quadratics. Table 4.4 contains the
average number of the attempted Cholesky factorizations (the first row) and average
CPU time (the second row). The third row for HT contains the average number of
the dimensions of the required search spaces in the nonlinear Arnoldi method. De-
tection of every quadratic is completed within the upper sweep of HT, and we do not
restart the nonlinear Arnoldi method (the maximum dimension is 91). For the fixed
value of ν , SA and HT have a very similar average number of the attempted Cholesky
factorizations, while ARC has the largest average number. When ν is far away from
the critical ν∗, all three algorithms detect the correct type of the quadratics almost
immediately. For nonoverdamped quadratics SA and ARC have a very similar aver-
age CPU time, while for the overdamped quadratics SA is significantly faster than
ARC. The slowest algorithm is HT, due to the most time consuming part: finding the
extremal eigenpair of a matrix of the order n in every iteration.
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Table 4.4 Comparison of 50 runs of SA, HT and ARC for detecting the (non)overdamped quadratics from
Example 4.3 for the fixed value of ν . The average number of the attempted Cholesky factorizations (CPU
time) is given in the first (second) row for every algorithm. The average number of dimensions of the
required search spaces in HT is given in brackets.

nonoverdamped
ν 0.2 0.4 0.5 0.5196 0.519615 0.51961524 0.5196152422

SA 0 1 3 5 10 10 10
0.004 0.006 0.02 0.04 0.18 0.19 0.18

HT
0 0 1 4 6 8 9

0.002 0.96 1.66 2.44 2.58 2.50 2.59
(0) (29) (44) (64) (69) (69) (71)

ARC 1 3 5 10 13 16 18
0.03 0.03 0.04 0.09 0.12 0.16 0.19

overdamped
ν 1 0.53 0.5197 0.51965 0.519616 0.51961525 0.5196152423

SA 1 1 2 4 6 7 11
0.006 0.002 0.008 0.03 0.06 0.08 0.23

HT
1 1 4 5 6 8 10

0.38 0.61 2.14 2.22 2.29 2.46 2.54
(12) (19) (59) (62) (65) (69) (70)

ARC 1 3 6 6 9 12 16
0.38 0.38 0.41 0.40 0.43 0.46 0.50

Example 4.4 We use the same method for constructing quadratics as in Example 4.2.
We construct a set of 80 Hermitian quadratics of order 1000, where λk for k =
1, . . . ,1000 are normally distributed with mean value −3 and standard variation 1,
and λk for k = 1001, . . . ,2000 are uniformly distributed in [−106,−6], cf. [18, Exam-
ple 3.2]. With random orthogonal matrices U1, U2 we take V1 = U1 and V2 = V1U2.
For 26 of these examples maxk=1001,...,2000 λk < mink=1,...,1000 λk, meaning that the
corresponding quadratics are hyperbolic.

Table 4.5 The minimum, average and maximum number of the attempted Cholesky factorizations (in
the first row) and CPU time (in the second row) of SA, HT and ARC for detecting 80 (non)hyperbolic
quadratics from Example 4.4.

min mean max

SA 2 22 46
0.07 1.0 2.2

HT 2 2 3
1.0 1.3 2.1

ARC 4 9 13
19.5 46.6 65.4

SA, HT and ARC correctly detect the type of the quadratics in all cases. The results
are shown in Table 4.5. Detection of every quadratic is completed within the upper
sweep of HT, and we do not restart the nonlinear Arnoldi method. We use complete
pivoting in the attempted Cholesky factorizations in ARC since the results are bet-
ter compared to the Cholesky factorizations without pivoting. Although SA has the
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largest average number of the attempted Cholesky factorizations, SA is the fastest in
55 problems, and HT in the remaining 25.

Example 4.5 In this experiment, we use sparse uniformly distributed random matri-
ces of order n = 10000 and form sparse positive definite M and K with the following
code:

dens=0.00005;

M=sprand(n,n,dens);

M=(M*M’)/2;M=M+20*speye(n);

M=M/max(max(abs(M)));

(and similarly for K). Therefore the elements of M,K are in [0,1] and M,K have
approximately 12500 nonzero elements. We use D = M+αK for different values of
α . We choose α = 0.75,0.9999,1 for which the quadratic Q(λ ) is nonoverdamped,
and α = 1.25,1.5 for which the quadratic Q(λ ) is overdamped. For the fixed value
of α we run SA, adapted for overdamped quadratics, HT and ARC for 20 times. The
attempted Cholesky factorizations in ARC are done without pivoting.

Table 4.6 Comparison of 20 runs of SA, HT and ARC for detecting the (non)overdamped quadratics from
Example 4.5 for the fixed value of α . The average number of the attempted Cholesky factorizations (CPU
time) is given in the first (second) row for every algorithm. The average number of dimensions of the
required search spaces in HT is given in brackets.

nonoverdamped overdamped
α 0.75 0.9999 1 1.25 1.5

SA 0 0 1 1 1
0.004 0.004 0.04 0.03 0.03

HT
0 0 4 1 1

0.003 0.003 56.4 52.5 52.6
(0) (0) (71) (66) (66)

ARC 2 5 13 1 1
0.5 0.6 0.8 9.3 9.5

The results are shown in Table 4.6. In all runs, SA and ARC correctly detect non-
overdampedness. For α < 1, SA and HT detect (non)overdampedness by definition.
In every run of HT for α = 1, the first approximation of λ

+
1 is equal to −1. Since

Q(−1) = 0, HT uses the lower sweep. In 13 runs HT correctly detects that Q(λ ) is
not hyperbolic, while in 7 other cases it converges without a decision. For α 6= 1 HT
correctly detects (non)overdampedness. For α < 1 the results for HT and ARC are
drastically improved compared to the results for α = 1. For α ≥ 1 SA is convincingly
the fastest algorithm.

Remark 4.2 Here we list a summary of the conclusions about three algorithms, i.e.
SA, ARC and HT, from experiments in Sect. 4.2.

– In some cases, all three algorithms detect (non)hypebolicity in a similar number
of the attempted Cholesky factorizations.
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– In most cases, HT has the smallest number of the attempted Cholesky factoriza-
tions.

– In most cases, SA has the shortest CPU time.

5 Conclusion

Numerical experiments show that by using a very simple type of search subspaces
of very small dimensions, proposed subspace algorithms can detect very quickly the
(non)hyperbolicity of a large Hermitian quadratic eigenvalue problem. Algorithm 3.2
can be more efficient with the preconditioners than without them. Our experiments
show that algorithms from [7,18] and the preconditioned variant of Algorithm 3.2
can detect (non)hyperbolicity in a similar number of the iterations. In comparison
with the algorithms from [7,18], the preconditioned variant of Algorithm 3.2 has the
shortest CPU time in almost all experiments.
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